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Abstract

The scope of the present study is Eulerian modeling and simulation of polydisperse liquid sprays undergoing droplet
coalescence and evaporation. The fundamental mathematical description is the Williams spray equation governing the
joint number density function f ðv; u; x; tÞ of droplet volume and velocity. Eulerian multi-fluid models have already been
rigorously derived from this equation in Laurent et al. [F. Laurent, M. Massot, P. Villedieu, Eulerian multi-fluid modeling
for the numerical simulation of coalescence in polydisperse dense liquid sprays, J. Comput. Phys. 194 (2004) 505–543]. The
first key feature of the paper is the application of direct quadrature method of moments (DQMOM) introduced by Marchi-
sio and Fox [D.L. Marchisio, R.O. Fox, Solution of population balance equations using the direct quadrature method of
moments, J. Aerosol Sci. 36 (2005) 43–73] to the Williams spray equation. Both the multi-fluid method and DQMOM yield
systems of Eulerian conservation equations with complicated interaction terms representing coalescence. In order to focus
on the difficulties associated with treating size-dependent coalescence and to avoid numerical uncertainty issues associated
with two-way coupling, only one-way coupling between the droplets and a given gas velocity field is considered. In order to
validate and compare these approaches, the chosen configuration is a self-similar 2D axisymmetrical decelerating nozzle
with sprays having various size distributions, ranging from smooth ones up to Dirac delta functions. The second key fea-
ture of the paper is a thorough comparison of the two approaches for various test-cases to a reference solution obtained
through a classical stochastic Lagrangian solver. Both Eulerian models prove to describe adequately spray coalescence and
yield a very interesting alternative to the Lagrangian solver. The third key point of the study is a detailed description of the
limitations associated with each method, thus giving criteria for their use as well as for their respective efficiency.
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1. Introduction

In many industrial combustion applications such as Diesel engines, fuel is stocked in condensed form and
burned as a dispersed liquid phase carried by a gaseous flow. Two phase effects as well as the polydisperse
character of the droplet size distribution (since the droplets dynamics depend on their inertia and are condi-
tioned by size) can significantly influence flame structure. Size distribution effects are also encountered in a
crucial way in solid propellant rocket boosters, where the cloud of alumina particles experiences coalescence
and become polydisperse in size, thus determining their global dynamical behavior [17,18]. The coupling of
dynamics, conditioned on particle size, with coalescence or aggregation as well as with evaporation can also
be found in the study of fluidized beds [36] and planet formation in solar nebulae [5,6]. Consequently, it is
important to have reliable models and numerical methods in order to be able to describe precisely the physics
of two-phase flows where the dispersed phase is constituted of a cloud of particles of various sizes that can
evaporate, coalesce or aggregate and also have their own inertia and size-conditioned dynamics. Since our
main area of interest is combustion, we will work with sprays throughout this paper, keeping in mind the
broad application fields related to this study.

Generally speaking, two approaches for treating liquid sprays corresponding to two levels of description
can be distinguished. The first, associated with a full direct numerical simulation of the process, provides a
model for the dynamics of the interface between the gas and liquid, as well as the exchanges of heat and mass
between the two phases using various techniques such as the volume of fluids (VOF) or level set methods
[3,15,19,35]. This ‘‘microscopic” point of view is very rich in information on the detailed properties at a more
local level concerning, for example, the resulting drag exerted on one droplet depending on its surroundings.
The second approach, based on a more global point of view, describes the droplets as a cloud of point particles
for which the exchanges of mass, momentum and heat are described globally, using eventually correlations,
and the details of the interface behavior, angular momentum of droplets, detailed internal temperature distri-
bution inside the droplet, etc., are not predicted. Instead, a finite set of global properties such as mass, momen-
tum, temperature are modeled. Because it is the only one for which numerical simulations at the scale of a
combustion chamber or in a free jet can be conducted, this ‘‘mesoscopic” point of view will be adopted in
the present paper.

Furthermore, we are interested in sprays where droplet interactions (e.g., coalescence) have to be taken
into account, which corresponds to liquid volume fractions between 0.1% and 1%. O’Rourke [30] classified
the various regimes from the ‘‘very thin spray”, which are transported by the gaseous carrier phase without
influencing the gaseous phase, through the ‘‘thin spray” regime, for which there is two-way coupling
through the momentum equation between the two phases, up to the ‘‘thick spray” regime for which the
volume fraction of liquid is high enough so that droplet–droplet interactions have to be taken into
account, but is still low enough so that the liquid volume fraction is negligible as compared to the gaseous
one. Because our primary focus is on the ability of Eulerian methods to capture droplet coalescence, our
study is limited here to the ‘‘thick spray” regime. By restricting our attention to one-way coupling, we can
avoid difficulties (e.g., grid convergence) associated with using Lagrangian methods with two-way coupling,
and it will thus be possible to make detailed comparisons between Eulerian and Lagrangian simulation
results.

In the mesoscopic framework, there exists considerable interest in the development of numerical methods
for simulating sprays [18,17,27,28,22,32]. The principal physical processes that must be accounted for are (1)
transport in real space, (2) droplet evaporation, (3) acceleration of droplets due to drag, and (4) coalescence of
droplets leading to polydispersity. The major challenge in numerical simulations is to account for the strong
coupling between these processes. Williams [37] proposed a relatively simple transport equation based on
kinetic theory that has proven to be a useful starting point for testing novel numerical methods for treating
coalescing liquid sprays. In the context of one-way coupling, the Lagrangian Monte-Carlo approach [9], called
Direct Simulation Monte-Carlo method (DSMC) by Bird [4], is generally considered to be more accurate than
Eulerian methods for solving Williams equation. However, its computational cost is high, especially in
unsteady configurations. Moreover, in applications with two-way coupling, Lagrangian methods are difficult
to couple accurately with Eulerian descriptions of the gas phase. There is thus considerable impetus to develop
Eulerian methods for describing sprays. In this paper, we limit our attention to one-way coupling with a given
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(laminar) gas velocity field (i.e., one-way coupling with a given gas velocity field). Thus no turbulence models
are required to close the spray equation.

In a recent paper Laurent et al. [22] have demonstrated the capability of an Eulerian multi-fluid model to
capture the physics of polydisperse evaporating sprays with one-way coupling. This approach relies on the
derivation of a semi-kinetic model from the Williams equation using a moment method for velocity, but
keeping the continuous size distribution function. This distribution function is then discretized using a
‘‘finite-volume” approach that yields conservation equations for mass, momentum (and eventually other
properties such as temperature) of droplets in fixed size intervals called ‘‘sections” extending the original
work of Tambour, Greenberg and collaborators [12,13]. Even though this approach has recently been
extended to higher order by Laurent [20] and Dufour [7,8], the necessity to discretize the size phase space
can be a stumbling block in some applications. Moment methods, on the other hand, do not encounter this
limitation.

In this work, we apply the recently developed direct quadrature method of moments (DQMOM) [24] to
treat Williams equation in a Eulerian framework. As its name implies, DQMOM is a moment method that
closes the non-linear terms (e.g., droplet coalescence) using weighted quadrature points (abscissas) in phase
space. Such a closure relates to the construction of an approximated number density function from a set of
moments under the form of a sum of Dirac delta functions, the support of which corresponds to the abscissas.
However, it is important to make a clear difference between such an Eulerian approach and the corresponding
Lagrangian approach, for which the number density is approximated by a large number of numerical ‘‘par-
cels”. The evolution of abscissas and the corresponding weights are governed by the dynamics of a few
moments, whereas the evolution of the parcels are governed by the Williams equation since they are a stochas-
tic discretization of this equation. Consequently, the DQMOM usually involves a very restricted number of
unknowns on a Eulerian mesh, whereas the Lagrangian method involves a very large number of unknowns
that are followed along their trajectories in phase space.

The DQMOM method distinguishes itself from other quadrature methods (e.g., QMOM [26,25]) by solving
transport equations for the weights and abscissas directly (instead of transport equations for the moments).
The source terms for the transport equations depend on the physical processes involved. For Williams equa-
tion, we show in Section 2 that laminar transport and drag result in source terms that are independent of the
choice of moments and, in fact, are equivalent to those used in Lagrangian formulations. When evaporation
does not lead to the disappearance of droplets in finite time, this is also true for the evaporation process. On
the other hand, coalescence leads to a linear system for the source terms for which the coefficient matrix
depends on the choice of moments. The applicability of DQMOM to Williams equation thus depends on
whether or not a particular choice(s) of moments can be found that leads to a non-singular linear system.
When the evaporation law allows the disappearance of droplets in finite time the equations for the moments
of the number density function not only involve unclosed integral terms, but also the flux of disappearing
droplets, i.e. the pointwise value of the number density function at zero size. This quantity has then to be
closed since it has a strong influence on the dynamics of the whole set of moments; it leads to a significant
difficulty since it corresponds to the reconstruction of a pointwise value of the number density function from
a set of its moments. In this study, we propose a solution to this difficult issue. Note that because spatial trans-
port is treated explicitly, it suffices to tackle the flux problem in the homogeneous case. We will see that a key
point is to provide a flux closure that yields stable moment dynamics and a non-singular linear system in the
DQMOM framework.

Let us also underline that the transport terms in the systems of conservation equations for both Eulerian
models are the same and given by pressureless gas dynamics. The structure of these transport terms and the
associated difficulties have been the subject of several studies and there are numerical methods designed in
order to treat the resulting singularities as shown in [22]. The question of the computational efficiency of such
Eulerian approaches (especially in coalescing systems) is a key question since these methods are intended to be
used in more realistic unsteady configurations as an alternative to the too costly Lagrangian methods for poly-
disperse sprays. We have already studied this question in [22] where the Eulerian multi-fluid approach was
shown to offer a good precision with a relative low cost [22]. Because of the similarity of the transport terms
for both Eulerian approaches, the conclusions about the computational efficiency presented in [22] are also
valid for the DQMOM method. Consequently we focus our study and comparisons on stationary configura-
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tions for which we are sure to have a reference solution at our disposal and from which we can obtain firm
conclusions about the capabilities of the various approaches.

In Section 3, we present the chosen test configuration, which is a self-similar 2D axisymmetrical decelerat-
ing nozzle and sprays with two inlet distributions: a smooth monomodal function and Dirac delta functions.
We also discuss in detail the reasons (e.g., significant coalescence rates) for the choice of the test cases, and why
they are particularly challenging for the various numerical methods. Finally the Lagrangian solver, the numer-
ical subtleties for obtaining the associated reference solution, as well as the multi-fluid method are then pre-
sented. In Section 4, we consider the results for the various test cases including combinations of coalescence,
linear evaporation in terms of volume (since it conserves the number of droplets and thereby eliminates the
need to model the evaporative flux) and the usual non-linear evaporation law (for which the evaporative flux
must be modeled). We present results for the most difficult test cases, designed to highlight the challenges one
would encounter in more realistic cases. The results are compared to a reference solution obtained through a
Lagrangian stochastic algorithm [17]. The advantages and limitations of the Eulerian methods are then ana-
lyzed in detail in terms of precision and efficiency. It is shown that the DQMOM method offers very interesting
features in a number of situations (e.g., strongly coalescing droplets), and is a good candidate for more com-
plex configurations.

2. DQMOM for williams equation

The Williams transport equation [37] for the joint volume, velocity number density function f ðv; u; x; tÞ is
@tf þ u � @xf þ @vðRvf Þ þ @u � ðFf Þ ¼ C; ð1Þ

where Rv is the evaporation rate, F is the drag force acting on the droplet, and C is the coalescence term. Note
that specific forms for the evaporation rate and drag law are not required for DQMOM. However, in this
work we will consider one-way coupling with a given gas velocity that appears in F. Using standard assump-
tions [22], we can write the coalescence term in two parts: C ¼ Q�coll þ Qþcoll where
Q�coll ¼ �
Z Z 1

0

Bðju� u�j; v; v�Þf ðv; uÞf ðv�; u�Þdv� du�; ð2Þ

Qþcoll ¼
1

2

Z Z v

0

Bðju} � u�j; v}; v�Þf ðv}; u}Þf ðv�; u�ÞJ dv� du�; ð3Þ
v} ¼ v� v�, u} ¼ ðvu� v�u�Þ=ðv� v�Þ, and J ¼ ðv=v}Þ3 is the Jacobian of the transform ðv; uÞ ! ðv}; u}Þ with
fixed ðv�; u�Þ. The collision frequency function B is defined by
Bðju� u�j; v; v�Þ ¼ Ecoalðju� u�j; v; v�Þbðv; v�Þju� u�j; ð4Þ
where Ecoal is the coalescence efficiency probability, which, based upon the size of droplets and the relative
velocity, discriminates between rebound and coalescence, and
bðv; v�Þ ¼ p
3v
4p

� �1=3

þ 3v�

4p

� �1=3
" #2

: ð5Þ
For simplicity, we will take Ecoal ¼ 0 (no coalescence) or Ecoal ¼ 1; however, any other functional form could
be used in the derivation that follows. A more general version of the spray equation would include the droplet
temperature and molecular composition. For simplicity, we consider only the volume and velocity in this
work. Finally note that adding spatial diffusion terms in Eq. (1) would generate additional terms in DQMOM
[24].

One of the principal mathematical difficulties when developing Eulerian solvers for Eq. (1) is the accurate
treatment of the coalescence term. Indeed, the integral form of C leads to highly non-local and non-linear
interactions in volume–velocity phase space. A ‘‘direct” Eulerian solver would require discretization of the
high-dimensional phase space (in addition to real space), and would thus be computationally intractable.
In contrast, multi-fluid models discretize only the volume phase space and use the average velocity conditioned
on droplet size (i.e., the mono-kinetic assumption [21]), while moment methods (such as DQMOM) provide
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closures based on a finite set of moments. Before applying DQMOM to Eq. (1), we should note that the coa-
lescence term is defined such that the moments representing mass and momentum are conserved:
Z

qvCðv; uÞdvdu ¼ 0 ð6Þ
and
 Z
qvuCðv; uÞdvdu ¼ 0; ð7Þ
where the liquid density q is assumed to be constant. These conservation properties must be retained in numer-
ical approximations used to treat Eq. (1) (as we shall see is the case with DQMOM).

The DQMOM approximates the density function by weighted delta functions in volume–velocity phase
space [11,24]:
f ðv; uÞ ¼
XN

n¼1

wndðv� vnÞdðu� unÞ; ð8Þ
where dðu� unÞ � dðu1 � u1;nÞdðu2 � u2;nÞdðu3 � u3;nÞ. Note that in this formulation, the weights wn and abscis-
sas (vn, un) are Eulerian fields. Application of DQMOM results in closed transport equations for the number
density, mass density, and momentum density, respectively, of the form:
@ twn þ @x � ðwnunÞ ¼ an; ð9Þ
@tðwnqvnÞ þ @x � ðwnqvnunÞ ¼ qbn ð10Þ
and
@tðwnqvnunÞ þ @x � ðwnqvnununÞ ¼ qcn; ð11Þ

where an, bn, and cn are source terms that are found from the right-hand side of Eq. (1) as described below.
These equations can be solved with appropriate initial and boundary conditions to find the fields wnðx; tÞ and
(vnðx; tÞ, unðx; tÞ) appearing in Eq. (8). Note that Eqs. (9)–(11) are equivalent to an Eulerian multi-fluid model
[22], but with the source terms on the right-hand side determined using DQMOM.

The DQMOM approximation for the moments of the number density function are found directly from Eq.
(8):
hvkul
1um

2 up
3i �

Z
vkul

1um
2 up

3f ðv; uÞdvdu ¼
XN

n¼1

wnvk
nul

1;num
2;nup

3;n: ð12Þ
The fundamental idea behind DQMOM is that we should choose the weights and abscissas such that as many
moments as possible are determined by the moment transport equations found from Eq. (1). Note that there
are a total of N weights, N volume abscissas, and 3N velocity abscissas and (equivalently) 5N unknown source
terms in Eqs. (9)–(11). We will thus need to choose 5N independent moments to determine the source terms.
We will return to the subject of how to choose the moments in Section 2.4. The procedure for using these mo-
ments to find the source terms is described next.

2.1. Space and time derivatives

The space and time derivatives in Eq. (1) generate the corresponding terms in Eqs. (9)–(11). These are found
by formally inserting Eq. (8), and differentiating:
@tf þ u � @xf ¼
XN

n¼1

dðv� vnÞdðu� unÞ½@twn þ @x � ðunwnÞ� �
XN

n¼1

wnd
ð1Þðv� vnÞdðu� unÞ½@tvn þ un � @xvn�

�
XN

n¼1

wndðv� vnÞdð1Þðu� unÞ � ½@tun þ un � @xun�; ð13Þ
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where dð1ÞðwÞ ¼ ddðwÞ=dw and dð1ÞðwÞ is a vector with components dð1Þ1 ðwÞ ¼ dð1Þðw1Þdðw2Þdðw3Þ, dð1Þ2 ðwÞ ¼
dðw1Þdð1Þðw2Þdðw3Þ, and dð1Þ3 ðwÞ ¼ dðw1Þdðw2Þdð1Þðw3Þ. Using the definitions of the source terms, Eq. (13) can
be rewritten as
@tf þ u � @xf ¼
XN

n¼1

½dðv� vnÞdðu� unÞ þ vnd
ð1Þðv� vnÞdðu� unÞ�an

�
XN

n¼1

½dð1Þðv� vnÞdðu� unÞ � v�1
n dðv� vnÞdð1Þðu� unÞ � un�bn

�
XN

n¼1

v�1
n dðv� vnÞdð1Þðu� unÞ � cn: ð14Þ
Note that this expression is linear in the source terms (an, bn, cn).
The next step is to apply the moment transform to Eq. (14). Formally, this yields
Z

vkul
1um

2 up
3ð@tf þ u � @xf Þdvdu ¼

XN

n¼1

ð1� kÞvk
nul

1;num
2;nup

3;nan þ
XN

n¼1

ðk � l� m� pÞvk�1
n ul

1;num
2;nup

3;nbn

þ
XN

n¼1

vk�1
n ul

1;num
2;nup

3;nðlu�1
1;nc1;n þ mu�1

2;nc2;n þ pu�1
3;nc3;nÞ; ð15Þ
where, unless otherwise noted, the definite integrals cover all of phase space. The next step is to consider the
terms in Eq. (1) that correspond to transport in volume–velocity phase space.

2.2. Phase–space transport

We begin by rewriting Eq. (1) as
@tf þ u � @xf ¼ P ; ð16Þ

where the phase–space transport terms are defined by
P � �@vðRvf Þ � @u � ðFf Þ þ C: ð17Þ

We can then define the moment transform of the phase–space terms by
P ðk; l;m; pÞ �
Z

vkul
1um

2 up
3P dvdu: ð18Þ
Note that if the moments P ðk; l;m; pÞ are known, Eq. (15) forms a linear system that can be solved to find the
unknown source terms. We can compute the phase–space moments using Eq. (17):
P ðk; l;m; pÞ ¼ �
Z

vkul
1um

2 up
3½@vðRvf Þ þ @u � ðFf Þ � C�dvdu: ð19Þ
As shown next, the integrals on the right-hand side can be expressed in terms of the weights and abscissas, and
a flux term corresponding to disappearance of droplets due to evaporation.

Starting with the evaporation term in Eq. (19), we can use integration by parts to find
Z 1

0

vk@vðRvf Þdv ¼ �dk0Rvð0; uÞf ð0; uÞ �
Z 1

0

kvk�1Rvðv; uÞf dv; ð20Þ
where dk0 is the Kronecker delta. Using Eq. (8) in the final integral, we find
Z
vkul

1um
2 up

3@vðRvf Þdvdu ¼ �dk0wðtÞul
f 1um

f 2up
f 3 �

XN

n¼1

kwnvk�1
n ul

1;num
2;nup

3;nRvðvn; unÞ; ð21Þ
where wðtÞ is the evaporative flux of droplets at zero size and uf is the velocity of droplets with zero volume
(which will normally correspond to the fluid velocity). Note that the first term on the right-hand side of Eq.
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(21) will be non-zero only for k ¼ 0, and corresponds to the loss of droplets due to evaporation. A fundamen-
tal question when applying DQMOM to evaporation problems is how to determine wðtÞ from the weights and
abscissas. The value of wðtÞ corresponds to the value of the number density function at zero size, and in the
case of the d2 evaporation law, it is precisely the value of the number density as a function of droplet surface,
which has no reason to be zero in general. Determining the value of wðtÞ, a pointwise information, from the
values of moments is clearly a difficult task, for which we will propose a solution in the next subsection. On the
other hand, the second term on the right-hand side of Eq. (21) is non-zero only for k > 0, and appears in
closed form.

Turning next to the drag-force term in Eq. (19), we can use integration by parts to find
Z
ul

j@ujðF jf Þdu ¼ �
Z

lul�1
j F jf du for j ¼ 1; 2; 3: ð22Þ
Thus, the drag-force term becomes
Z
vkul

1um
2 up

3@u � ðFf Þdvdu ¼ �
XN

n¼1

wnvk
nul

1;num
2;nup

3;n½lu�1
1;nF 1ðvn; unÞ þ mu�1

2;nF 2ðvn; unÞ þ pu�1
3;nF 3ðvn; unÞ�: ð23Þ
Note that this term appears in closed form.
Turning now to the coalescence term, we will treat each of the two parts Q�coll and Qþcoll separately. The first

part yields in a straightforward manner
Z
vkul

1um
2 up

3Q�coll dv du ¼ �
XN

n¼1

XN

q¼1

wnwqvk
nul

1;num
2;nup

3;nBðjun � uqj; vn; vqÞ: ð24Þ
The second part requires a change in the order of integration, and a change of variables:
Z Z v

0

hðv; uÞBðju} � u�j; v}; v�Þf ðv}; u}Þf ðv�; u�ÞJ dv�
� �

dvdu� du

¼
Z Z 1

v�
hðv; uÞBðju} � u�j; v}; v�Þf ðv}; u}Þf ðv�; u�ÞJdv

� �
dv� du� du

¼
Z

h v� þ v};
v�u� þ v}u}

v� þ v}

� �
Bðju} � u�j; v}; v�Þf ðv}; u}Þf ðv�; u�Þdv� dv} du� du}; ð25Þ
where h is an arbitrary function of v and u. It then follows that
Z
vkul

1um
2 up

3Qþcoll dv du ¼ 1

2

XN

n¼1

XN

q¼1

wnwqðvn þ vqÞk
vnu1;n þ vqu1;q

vn þ vq

� �l

� vnu2;n þ vqu2;q

vn þ vq

� �m vnu3;n þ vqu3;q

vn þ vq

� �p

Bðjun � uqj; vn; vqÞ: ð26Þ
Note that the right-hand side of this expression is in closed form.
Collecting together all of the terms, the moments appearing on the right-hand sides of Eqs. (21)–(26)

become
P ðk; l;m; pÞ ¼ dk0wðtÞul
f 1um

f 2up
f 3 þ

XN

n¼1

kwnvk�1
n ul

1;num
2;nup

3;nRvðvn; unÞ þ
XN

n¼1

wnvk
nul

1;num
2;nup

3;n½lu�1
1;nF 1ðvn; unÞ

þ mu�1
2;nF 2ðvn; unÞ þ pu�1

3;nF 3ðvn; unÞ� þ
1

2

XN

n¼1

XN

q¼1

wnwq ðvn þ vqÞk
vnu1;n þ vqu1;q

vn þ vq

� �l
"

� vnu2;n þ vqu2;q

vn þ vq

� �m vnu3;n þ vqu3;q

vn þ vq

� �p

� vk
nul

1;num
2;nup

3;n � vk
qul

1;qum
2;qup

3;q

�
Bðjun � uqj; vn; vqÞ:

ð27Þ
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Note that due to the form of the coalescence term, the moments conserve mass (P ð1; 0; 0; 0Þ ¼ 0) and momen-
tum (Pð1; 1; 0; 0Þ ¼ Pð1; 0; 1; 0Þ ¼ Pð1; 0; 0; 1Þ ¼ 0) when evaporation and drag are null. Thus, the weights and
abscissas in the DQMOM representation will keep the same conservation properties as the original model (i.e.,
as Eq. (1)).

Comparing the terms in Eqs. (15) and (27), we can note that the evaporation and drag terms in the
DQMOM representation can be solved for explicitly. Thus, the source terms can be written as
bn ¼ b�n þ wnRvðvn; unÞ; ð28Þ
cn ¼ c�n þ wnunRvðvn; unÞ þ wnvnFðvn; unÞ; ð29Þ
where source terms an, b�n and c�n in the transport equations are found by solving the linear system
XN

n¼1

ð1� kÞvk
nul

1;num
2;nup

3;nan þ
XN

n¼1

ðk � l� m� pÞvk�1
n ul

1;num
2;nup

3;nb�n

þ
XN

n¼1

vk�1
n ul

1;num
2;nup

3;nðlu�1
1;nc�1;n þ mu�1

2;nc�2;n þ pu�1
3;nc�3;nÞ ¼ P �ðk; l;m; pÞ; ð30Þ
with the right-hand side given by
P �ðk; l;m; pÞ ¼ � dk0wul
f 1um

f 2up
f 3 þ

1

2

XN

n¼1

XN

q¼1

wnwq ðvn þ vqÞk
vnu1;n þ vqu1;q

vn þ vq

� �l
"

� vnu2;n þ vqu2;q

vn þ vq

� �m vnu3;n þ vqu3;q

vn þ vq

� �p

� vk
nul

1;num
2;nup

3;n � vk
qul

1;qum
2;qup

3;q

�
Bðjun � uqj; vn; vqÞ:

ð31Þ
The expression for the source terms (Eq. (30)) completes the derivation of the DQMOM transport equations
for the Williams spray equation.

In the absence of coalescence, Eq. (31) is particularly simple. Thus, the pure evaporation case is an
interesting limit case for which an, b�n, and c�n will be non-zero only if the evaporative flux w is non-zero.
However, the evaporative flux cannot be determined by moment constraints alone (see Section 2.3). If the
evaporative flux is assumed to be null, the zero-order moment will remain unchanged in the absence of
coalescence as long as some abscissa crosses the zero size limit and yields a pointwise singular and infinite
flux as in Lagrangian methods when some parcels reach the zero size limit. However, as mentioned in the
Introduction, since there are only a few abscissas that describe the moment dynamics, such a singular
behavior is not ideal for smooth number density functions (whereas it is the correct one if the number den-
sity function is a sum of Dirac delta function from the beginning as in the bimodal case that will be stud-
ied later). Consequently we need an evaluation of this flux function that guarantees a smooth flux as a
function of time for smooth distribution functions. Even when coalescence is included, the moments
may be poorly estimated if the evaporative flux is neglected. An example of such behavior can be found
in the work of Mossa [29] where the droplet size distribution is presumed to be log-normal and where the
evaporative flux at zero size is neglected, leading to numerical difficulties and a poor prediction of the sec-
ond moment. Thus, we will use a separate procedure, described next, to approximate the contribution due
to the evaporative flux that yields a continuous in time flux, as well as a guarantee that the abscissas never
cross the zero size limit.
2.3. Evaporative flux

The source terms cannot be computed directly from the moment constraints in Eq. (31) because the evap-
orative flux is unknown. We must therefore apply additional (or different) constraints to determine all of the
unknowns. Considering only evaporation and setting drag and coalescence to zero in the right-hand side of
Eq. (30), we obtain the following linear system:
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XN

n¼1

ð1� kÞvk
nul

1;num
2;nup

3;nan þ
XN

n¼1

ðk � l� m� pÞvk�1
n ul

1;num
2;nup

3;nb�n

þ
XN

n¼1

vk�1
n ul

1;num
2;nup

3;nðlu�1
1;nc�1;n þ mu�1

2;nc�2;n þ pu�1
3;nc�3;nÞ þ dk0ul

f 1um
f 2up

f 3w ¼ 0; ð32Þ
with 5N þ 1 unknowns an, b�n, c�n and w. Note that because the right-hand side is null, only trivial solutions can
be found using moment constraints. We will therefore introduce ratio constraints of the form
D

Dt
wn

wnþ1

� �
evap

¼ 0;
D

Dt
vn

vnþ1

� �
evap

¼ 0 and
D

Dt
ujn

ujnþ1

� �
evap

¼ 0;
which are applied only for the changes due to evaporation. These constraints are motivated by the behavior of
the weights and abscissas corresponding to sufficiently smooth and continuous density functions. For exam-
ple, if the surface density function is exponential and the evaporation rate is proportional to the surface area of
a droplet, then the abscissas remain constant and the weights decrease monotonely. On the other hand, for
singular density functions (e.g., composed of delta functions), the ratio constraints are expected to perform
poorly. We will look more closely at this issue in Section 4.

It can be observed that the choice of k ¼ l ¼ m ¼ p ¼ 0 in Eq. (32) leads to
w ¼ �
XN

n¼1

an: ð33Þ
Thus, the evaporative flux depends only on an. Note that physically w P 0. Hence, if the value computed for w
from Eq. (33) is negative (which is possible for very general evaporation rates), then an, b�n, c�n and w are set
equal to zero. However, for the evaporation rate considered in this paper, it can be shown that the flux will
be non-negative.

Conservation of mass (k ¼ 1 and l ¼ m ¼ p ¼ 0 in Eq. (32)) leads to
X
n

b�n ¼ 0: ð34Þ
Applying the ratio constraint for the abscissas yields
wnþ1vnþ1b�n � wnvnb�nþ1 ¼ En for n ¼ 1; . . . ;N � 1; ð35Þ
where the right-hand side is defined by
En ¼ wnwnþ1½vnRvðvnþ1Þ � vnþ1RvðvnÞ�: ð36Þ
Note that in order for there to be an evaporative flux, we will normally have En P 0 for all n (assuming that
v1 < v2 < � � � < vN ). The case where En ¼ 0 occurs when RvðvÞ is proportional to �v (i.e., the evaporation rate
is proportional to the droplet volume). The more common case where En > 0 occurs when RvðvÞ is propor-
tional to �v1=3 (i.e., the droplet surface area decreases linearly). In general, RvðvÞ / �vc with c < 1 will lead
to positive En. The physical interpretation for this difference is that for c < 1 the droplets will disappear
due to evaporation in a finite time, while for c P 1 the disappearance time is infinite. The linear system formed
from Eqs. (34) and (35) can be solved separately to find b�n.

Conservation of momentum (k ¼ 1 and l, m, or p ¼ 1 in Eq. (32)) leads to
XN

n¼1

c�n ¼ 0: ð37Þ
Likewise, the ratio constraint for each component of the velocity yields
wnþ1vnþ1ujnþ1c�jn � wnvnujnc�jnþ1 ¼ ujnujnþ1En for n ¼ 1; . . . ;N � 1: ð38Þ
Together with Eq. (37), this equation can be solved separately for each component (j ¼ 1; 2; 3) to find c�n.
The ratio constraint for the weights yields N � 1 equations for an:
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wnþ1an � wnanþ1 ¼ 0 for n ¼ 1; . . . ;N � 1: ð39Þ

Note that this constraint is satisfied by an ¼ awn where a is unknown. We must therefore choose one indepen-
dent moment in Eq. (32) in order to solve for a. Since b�n and c�n are known, we can rearrange Eq. (32) as
a
XN

n¼1

½ðk � 1Þvk
nul

1;num
2;nup

3;n þ dk0ul
f 1um

f 2up
f 3�wn ¼

XN

n¼1

ðk � l� m� pÞvk�1
n ul

1;num
2;nup

3;nb�n

þ
XN

n¼1

vk�1
n ul

1;num
2;nup

3;nðlu�1
1;nc�1;n þ mu�1

2;nc�2;n þ pu�1
3;nc�3;nÞ; ð40Þ
which can be solved with k 6¼ 1 to find a. If we choose, for example, k ¼ 2 and l ¼ m ¼ p ¼ 0 as the indepen-
dent moment, then the constraint becomes
a ¼ 2
XN

n¼1

vnb�n
XN

n¼1

v2
nwn

,
ð41Þ
and a depends only on b�n. However, if we choose k ¼ 2 and l ¼ m ¼ p ¼ 1, then the constraint becomes
a ¼
XN

n¼1

vnðu2nu3nc�1n þ u1nu3nc�2n þ u1nu2nc�3n � u1nu2nu3nb�nÞ
XN

n¼1

v2
nu1nu2nu3nwn

,
: ð42Þ
For this choice, a is independent of uf . A choice that leads to a fully coupled system is k ¼ 2, l ¼ 2, m ¼ p ¼ 0,
which yields
a ¼ 2
XN

n¼1

vnu1nc�1n

XN

n¼1

v2
nu2

1;nwn

,
ð43Þ
or k ¼ m ¼ p ¼ 0 and l ¼ 1, which yields
a ¼
XN

n¼1

v�1
n ðu1;nb�n � c�1;nÞ

XN

n¼1

ðu1;n � uf 1Þwn

,
: ð44Þ
Note that when vn ! 0, we have u1;n ! uf 1 and c�1;n ! uf 1b�n; hence, this last constraint is consistent with this
limiting behavior. These choices are asymmetric in the velocity components, and thus do not treat all compo-
nents the same. A ‘‘symmetric” choice with similar properties is k ¼ 2 and l ¼ m ¼ p ¼ 2 or k ¼ 0 and
l ¼ m ¼ p ¼ 1, which lead to a more complicated constraint. The ‘‘best” choice will most likely be problem
dependent. In our test cases, the choices with k ¼ 2 give similar results, better than the ones with k ¼ 0.
The calculations are thus done with the value of a given in Eq. (41): this value is the simplest and can be shown
to be non-positive as soon as En P 0, at least for the case N ¼ 2.

In summary, the contribution due to evaporation is estimated by first solving separate linear systems for b�n
and c�n. The estimate for an ¼ awn is found using an independent moment constraint from Eq. (40) to find a.
Finally, the evaporative flux w is computed from Eq. (33), and should be non-negative. If w is negative (or
equivalently if a is positive), then the contribution due to evaporation is null. The contribution due to coales-
cence is found by solving a linear system of the form of Eq. (30) where the right-hand side is given by Eq. (31)
with w ¼ 0. As described below, the final source terms (an, b�n, c�n) are found simply by adding together the
contributions from the evaporative flux and coalescence.

2.4. DQMOM linear system

The DQMOM representation of Williams spray equation is given by the transport equations for the
weights and abscissas (Eqs. (9)–(11)). The source terms for these equations are found by solving the linear sys-
tem as described above. The exact form of the linear system depends on the choice of moments. This choice, in
turn, will determine if the system is well defined in the sense that the coefficient matrix is non-singular. A
choice of moments that is consistent with the mono-kinetic assumption used in the multi-fluid model is to
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consider only moments of orders zero and one in the velocity components (i.e., l;m; p 2 f0; 1g). In this work,
in order to make direct comparisons with the multi-fluid model, we will limit our consideration to such
moments. In general, this choice of moments should allow for the best possible description of droplet coales-
cence, while at the same time ensuring that droplet mass and momentum are conserved.

A choice of 5N moments that has been found to be non-singular is
k ¼ ði� 1Þ=3; i 2 f1; . . . ; 2Ng with l ¼ m ¼ p ¼ 0;

k ¼ i; i 2 f1; . . . ;Ng with l ¼ 1; m ¼ p ¼ 0;

k ¼ i; i 2 f1; . . . ;Ng with m ¼ 1; l ¼ p ¼ 0;

k ¼ i; i 2 f1; . . . ;Ng with p ¼ 1; l ¼ m ¼ 0:

ð45Þ
For N P 2, this choice of moments includes the surface area and the volume of the droplets, which are impor-
tant variables for evaporating spray, as well as their momentum. The linear system can then be written in ma-
trix form (showing only non-zero components) as
A1 A2 E1 E2 E3

A3 A4

B1 C1 D1

B2 C2 D2

B3 C3 D3

2
6666664

3
7777775

a

b�

c�1

c�2

c�3

2
6666664

3
7777775
¼

Pa

Pb

P1

P2

P3

2
6666664

3
7777775
; ð46Þ
where the matrices Aj, Bj, Cj, Dj and Ej are all N � N, and a, b� and c�j are column vectors formed from the
components an, b�n and c�jn, respectively. In general, the exact definitions of the other matrices will depend on
which constraints are used to define the system, i.e., Eq. (30) or those described in Section 2.3. Nevertheless,
the form of the linear system is the same in all cases. As noted earlier, the linear system is solved twice at each
time step. First with the matrices for the evaporative flux without coalescence (i.e., A3 ¼ Bj ¼ Cj ¼ 0), and
second with the matrices for coalescence without evaporation (i.e., Ej ¼ 0). The unknowns a; . . . ; c�3 are found
by adding the two solutions.

As discussed earlier, for the evaporative step the linear system can be decomposed into five N � N systems
that can be solved sequentially. Likewise, for the coalescence step a and b* can be found separately by solving
a 2N � 2N system:
A1 A2

A3 A4

� �
a

b�

� �
¼

Pa

Pb

� �
ð47Þ
and then each of the vectors cj can be found separately:
Djc
�
j ¼ Pj � Bja� Cjb

�; ð48Þ
where (for coalescence) Dj ¼ V is a Vandermonde matrix [31] formed from the volume abscissas vn. Other
choices of moments have also been found to be numerically stable. For example, another valid choice is
k ¼ ði� 1Þ=3; i 2 f1; . . . ; 2Ng with l ¼ m ¼ p ¼ 0;

k ¼ ð2i� 1Þ=3; i 2 f1; . . . ;Ng with l ¼ 1; m ¼ p ¼ 0;

k ¼ ð2i� 1Þ=3; i 2 f1; . . . ;Ng with m ¼ 1; l ¼ p ¼ 0;

k ¼ ð2i� 1Þ=3; i 2 f1; . . . ;Ng with p ¼ 1; l ¼ m ¼ 0:

ð49Þ
This choice can be found to give more accurate results for our test cases and still includes the surface area and
the volume of the droplets, as well as their momentum. Thus, it will be used for the computations in Section 4.
We should note that for a given value of N, the simulation results found with the moment sets in Eqs. (45) and
(49) were nearly identical. The choice between these two systems was thus made based on ease of solution of
the linear system.

In general, when moments involving the velocity are limited to first order, the matrices that must be
inverted will be non-singular as long as the volume abscissas are distinct. The numerical treatment of the
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singularities associated with Eq. (47) has been discussed elsewhere [24]. The coalescence operator will normally
force the vn to remain distinct if they have distinct velocities. However, if due to initial conditions two or more
of the volume abscissas are equal, it suffices to perturbate the values of vn enough to allow for the coefficient
matrix in Eq. (47) to be invertible. We should also note that for cases dominated by coalescence (e.g., without
evaporation) the volume abscissas grow rapidly, leading to matrices that are more and more ill-conditioned as
the abscissas increase. Thus, even though they are strictly non-singular, such matrices lead to severe numerical
difficulties. However ill-conditioning can be almost completely alleviated by using iterative improvements of
the linear solver as described in Section 2.5 of Press et al. [31] after rescaling Eq. (30). The latter is done by
defining positive scaling factors vs and us, and dividing both sides of Eq. (30) by vk

s ulþmþp
s . Note that the abscis-

sas and unknown source terms are rescaled in a consistent manner: vn ! vn=vs, un ! un=us, a! a, b� ! b�=vs,
and c�j ! c�j=ðvsusÞ. The evaporative flux constraints (Eqs. (35), (38) and (40)) can be rescaled in a similar man-
ner by introducing a positive scaling factor ws for the weights: wn ! wn=ws. In this work, we use the following
scaling factors: vs ¼ maxnvn, us ¼ maxnjunj and ws ¼

P
nwn. We find that using the scaled variables and at most

three iterative improvements of the linear solver are enough to completely eliminate round-off error in the
solution to the DQMOM linear system. Moreover, because round-off error leads to poor performance of
the differential equation solver, the overall computational cost using the iterative improvements can be signif-
icantly reduced.

3. Nozzle test problem

In order to validate the proposed DQMOM approach for strongly coalescing sprays, and to compare this
method to both a reference Lagrangian solver solution as well as the solution obtained with the multi-fluid
model, we need a well-suited test problem that is difficult enough to highlight the limitations of the methods
under consideration. For that purpose, we have chosen for the gas phase a 2D axisymmetrical conical decel-
erating nozzle, designed in such a way that it admits, for one-way coupling spray dynamics a self-similar solu-
tion. After presenting the details of this configuration, we will provide the set of DQMOM equations to be
solved in this framework. We have selected six representative test cases, combining coalescence/no coalescence
with evaporation/no evaporation, which are then presented. Next we give an overview of the Lagrangian sol-
ver that provides the reference solution for the various test cases. Because the problems under consideration
can be difficult to solve numerically, we must be very careful as far as this reference solution in concerned and
thus we provide the details of the Lagrangian numerical integration in the limit of one-way coupling with the
gas phase. Finally, before discussing the results in Section 4, we review the fundamentals of the Eulerian multi-
fluid model for the sake of self-consistency of the paper.

3.1. Definition of configuration

The chosen configuration is stationary 2D axisymmetrical in space and 1D in droplet size. It is described in
detail, along with the Lagrangian solver, in [22]. Hence, only its essential characteristics are given here.

A spray of pure heptane fuel is carried by a gaseous mixture of heptane and nitrogen into a conical diverg-
ing nozzle of axis (0 < z). At the entrance, z ¼ z0, 99% of the mass of the fuel is in the liquid phase, whereas 1%
is in the gaseous mixture. The temperature (400 K) as well as the composition of the gas mixture (mass frac-
tion is 2.9% for heptane and 97.1% for nitrogen) is fixed during the entire calculation. The gas density is then
0.871733 mg cm�3. The influence of the evaporation process on the gas characteristics is not taken into
account in our one-way coupled calculation. It is clear that the evaporation process is going to change the
composition of the gas phase and then of the evaporation itself. However, we do not attempt to achieve a fully
coupled calculation, but only to compare two ways of evaluating the coupling of the dynamics, evaporation
and coalescence of the droplets. It has to be emphasized that it is not restrictive in the framework of this study,
which is focused on the numerical validation of Eulerian solvers for the liquid phase under conditions of
strong coalescence.

For the problem to be one-dimensional in space, conditions for straight trajectories are used and are com-
patible with the assumption of an incompressible gas flow. This leads to the following expression for the gas-
eous axial velocity vz and the reduced radial velocity vr=r:
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vz ¼ V ðzÞ ¼ z2
0V ðz0Þ

z2
;

vr

r
¼ UðzÞ ¼ V ðzÞ

z
¼ z2

0V ðz0Þ
z3

for z P z0; ð50Þ
where z0 > 0 is the coordinate of the nozzle entrance and the axial velocity V ðz0Þ at the entrance is fixed. The
trajectories of the droplets are also assumed straight since their injection velocity is co-linear to the one of the
gas. This assumption is only valid when no coalescence occurs. However, even in the presence of coalescence,
it is valid in the neighborhood of the centerline.

Let us finally consider two droplet distribution functions. The first one, called monomodal, is composed of
droplets with radii between 0 and 35 lm, with a mean radius of 12 lm, a variance of 5 lm and a Sauter mean
radius of 15.6 lm. It is represented in Fig. 1 and is typical of the experimental conditions reported in [23]. The
droplets are constituted of liquid heptane, their initial velocity is the one of the gas, their initial temperature,
fixed at the equilibrium temperature 325.4 K (corresponding to an infinite conductivity model), does not
change along the trajectories. The second distribution is called bimodal since it involves only two groups of
radii, respectively, 10 and 30 lm with equal mass density. This bimodal distribution function is typical of alu-
mina particles in solid propergol rocket boosters [17], and is represented in Fig. 1.

The initial injected mass density is taken as m0 ¼ 3:609 mg cm�3 so that the volume fraction occupied by the
liquid phase is 0.57%. Because of the deceleration of the gas flow in the conical nozzle, droplets are going to
decelerate, however at a rate depending on their size and inertia. This will induce coalescence. The deceleration
at the entrance of the nozzle is taken as aðz0Þ ¼ �2V ðz0Þ=z0; it is chosen large enough so that the velocity dif-
ference developed by the various sizes of droplets is important. We have chosen rather large values, as well as
strong deceleration, leading to extreme cases: V ðz0Þ ¼ 5 m s�1, z0 ¼ 10 cm for the monomodal case and
V ðz0Þ ¼ 5 m s�1, z0 ¼ 5 cm for the bimodal case. These values generate a very strong coupling between coales-
cence, evaporation and droplet dynamics. These severe conditions as well as the two types of size distributions
make the test cases under consideration very efficient tools for the numerical evaluation of the two Eulerian
models.

3.2. DQMOM model equations in nozzle configuration

For the nozzle test case, Eqs. (9)–(11) reduce to a set of ordinary differential equations (ODEs) defined on
the interval z 2 ½z0;1Þ for the variables wn, vn, gnðzÞ ¼ ur=r and nnðzÞ ¼ uz:
2wngn þ @zðwnnnÞ ¼ an; ð51Þ
2wnvngn þ @zðwnvnnnÞ ¼ bn; ð52Þ
3wnvng

2
n þ @zðwnvngnnnÞ ¼ crn=r; ð53Þ

2wnvngnnn þ @zðwnvnn
2
nÞ ¼ czn; ð54Þ
Fig. 1. Initial number density functions for droplet radius. Left: Monomodal distribution. Right: Bimodal distribution.
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where uz ¼ nðzÞ and ur ¼ rgðzÞ are the axial and radial components of the spray velocity, respectively. The cor-
responding fluid velocities are given in Eq. (50). The terms on the right-hand side of Eqs. (52)–(54) are given by
bn ¼ b�n þ wnRvðvnÞ; ð55Þ
crn=r ¼ c�rn þ wngnRvðvnÞ þ wnvnF rðvn; gnÞ=r; ð56Þ
czn ¼ c�zn þ wnnnRvðvnÞ þ wnvnF zðvn; nnÞ; ð57Þ
where the drag model is
F rðv; gÞ=r ¼ a
4p
3v

� �2=3

ðU � gÞ; ð58Þ

F zðv; nÞ ¼ a
4p
3v

� �2=3

ðV � nÞ ð59Þ
with a ¼ 1:566� 10�7 m2 s�1.
From the form of the governing equations, it is straightforward to show that if gn ¼ nn=z at z ¼ z0, then this

relation will hold for all z and the droplet trajectories are straight lines. The system of DQMOM model equa-
tions can thus be reduced to three non-linear ODEs for w�n ¼ wnðz=z0Þ2, vn, and nn by eliminating Eq. (53):
@zðw�nnnÞ ¼ an; ð60Þ
@zðw�nvnnnÞ ¼ b�n þ w�nRvðvnÞ ð61Þ
and
@zðw�nvnn
2
nÞ ¼ c�zn þ w�nnnRvðvnÞ þ aw�nvn

4p
3vn

� �2=3

ðV � nnÞ: ð62Þ
The terms on the left-hand side represent changes in the weights and abscissas due to transport. The terms on
the right-hand side represent, respectively, the changes due to coalescence, evaporation, and drag. The coales-
cence terms are found by solving
ð1� kÞ
XN

n¼1

vk
nn

m
n an þ ðk � mÞ

XN

n¼1

vk�1
n nm

n b�n þ m
XN

n¼1

vk�1
n nm�1

n c�zn

¼ 1

2

z0

z

� �2XN

n¼1

XN

q¼1

w�nw�qBðjnn � nqj; vn; vqÞ ðvn þ vqÞk
vnnn þ vqnq

vn þ vq

� �m

� vk
nn

m
n � vk

qn
m
q

� �
: ð63Þ
Note the presence of the scaling factor ðz0=zÞ2 in the coalescence rate. As discussed in Section 2.4, we will use
moments given in Eq. (49) that decouple Eq. (63) into two smaller systems.

3.3. Test cases

For evaporation, we will consider three cases described below: (i) no evaporation (Rv ¼ 0), (ii) linear evap-
oration (Rv / v), and (iii) non-linear evaporation (Rv / v1=3). For each case, we will consider two sub-cases:
without coalescence (Ecoal ¼ 0) and with coalescence (Ecoal ¼ 1). The two evaporation laws correspond to
the two cases described in Section 2.3, for which droplets disappear either in infinite time (ii), thus leading
to a evaporative flux at zero size, or in finite time (iii) for which the evaporative flux depends on the structure
of the number density function in size phase space.

3.3.1. No evaporation

For the special case of no evaporation and no drag, the right-hand sides of Eqs. (52)–(54) are null. This
special case has an analytical solution with vn, w�n, and nn constant. In the opposite limit of no evaporation
and infinite drag, nn ¼ V and w�n / ðz=z0Þ2.

For non-evaporating droplets, Rv ¼ 0. In the absence of coalescence, an ¼ b�n ¼ c�zn ¼ 0. The DQMOM
model reduces to vn and w�n constant, and
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nn@znn ¼ a
4p
3vn

� �2=3

ðV � nnÞ: ð64Þ
This result is consistent with our earlier remark concerning the cases of zero and infinite drag. Finally, we should
note that even with coalescence the momentum is conserved (k ¼ m ¼ 1) so that

P
c�zn ¼ 0. Thus, we can expect

w�nnn to be approximately constant for all values of drag. For this case we expect excellent agreement between
DQMOM and the Lagrangian solver in the absence of coalescence since the corresponding transport equations
are identical (i.e., each DQMOM abscissa behaves like a Lagrangian particle). On the other hand, with coales-
cence the droplets grow very large and we expect differences due to how the coalescence term is treated in each
method. This test case will, however, be very difficult for the multi-fluid model, since it was especially designed to
tackle the problem of evaporation. In the presence of strong growth of droplet size, the number of sections that
must be used in order to reproduce the physics with the multi-fluid model will also dramatically increase. Con-
sequently, this test case will allow us to both test the capability of the DQMOM to capture the coupling of
dynamics and coalescence at low cost in comparison to the Lagrangian solution, and to see if the multi-fluid
model can provide good results, even if it is not competitive in terms of computational efficiency.

3.3.2. Linear evaporation

For evaporating droplets with linear evaporation, we take
RvðvnÞ ¼ �Evvn; ð65Þ

with Ev ¼ 7:1262 s�1 for the monomodal case and Ev ¼ 14:2524 s�1 for the bimodal case. For this case, the
evaporative flux w is zero. The coalescence terms are again found by solving Eq. (63). In the absence of coa-
lescence, we have an ¼ b�n ¼ c�zn ¼ 0 and the DQMOM model reduces to w�nnn constant, Eq. (64), and
nn@zvn ¼ RvðvnÞ: ð66Þ

Thus the volume vn and velocity nn are coupled through evaporation and drag, but are independent of w�n in
the absence of coalescence. For this case we again expect excellent agreement between DQMOM and the
Lagrangian solver in the absence of coalescence since the corresponding transport equations are identical.
On the other hand, with coalescence there is a competition between growth and evaporation leading to smaller
droplets than in the non-evaporating case. This is a very interesting test case, since it will allow us to compare
both methods in an evaporative configuration, but without getting into the difficulty of modeling the droplet
disappearance with the DQMOM approach.

3.3.3. Non-linear evaporation

With non-linear evaporation we will use
RvðvnÞ ¼ �
Es

2

3vn

4p

� �1=3

ð67Þ
with Es ¼ 1:99� 10�7 m2=s. For this case the evaporative flux w will generally be non-zero, and is found using
the method described in Section 2.3 with w�n in place of wn. However, we will also compare predictions for the
bimodal initial distribution found by setting w ¼ 0. As for the previous cases, we will investigate the effect of
the flux model with and without coalescence. From a practical standpoint, the behavior of DQMOM with
non-linear evaporation is of great interest and it is a configuration with which the comparison of both Eulerian
models will be of practical relevance.

3.4. Reference Lagrangian solution

Euler–Lagrange numerical methods are commonly used for the calculation of polydisperse sprays in var-
ious application fields (see for example [30,18,27,28,33,10] and the references therein). In this kind of
approach, the gas phase is generally computed using a deterministic Eulerian solver, while the dispersed phase
is treated in a Lagrangian way. The influence of the droplets on the gas flow is taken into account by the pres-
ence of source terms in the system of gas conservation equations. Two Lagrangian methods can be used as far
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as the dispersed phase is concerned depending on the level at which the physical processes are modeled. The
first one is a discrete particle simulation, which describes the evolution of numerical particles, each one rep-
resenting one or several droplets. The physical processes such as transport, evaporation, collisions are then
described by Liouville equations and the Eulerian fields usually recovered through ensemble averages. How-
ever, in the present study, we have preferred the Williams governing equation and thus a statistical description
of the coalescence process. We then coherently use a direct simulation Monte-Carlo method (DSMC), the sec-
ond kind of approach. It can be seen as the uncoupling, over a small time step, of the droplet transport in
phase space (dynamics and evaporation), described by a particle method, and the collisions described by a
Monte-Carlo method.

A complete exposition on the derivation and implementation of this method is outside the scope of this
paper. We refer the reader, for example, to [2,18,17] for more details. Here, for the sake of completeness,
we present only the main features of the numerical method that we used in order to provide a ‘‘reference
numerical solution” for the test cases.

3.4.1. Lagrangian solver

The Lagrangian solver can be roughly interpreted as a stochastic representation of the kinetic Eq. (1). In other
words, in the limit of a sufficiently large number of stochastic particles and a sufficiently fine computational grid
(at least in the case of one-way coupling), the statistical estimates for the moments found from the particles
should converge to those computed from the Eq. (1). In the Lagrangian solver, at each time step k, the droplet
distribution function f ðtkÞ is approximated by a finite weighted sum of Dirac masses, ~f ðtkÞ, which reads
~f ðtkÞ ¼
XNk

i¼1

nk
i dzk

i ;u
k
i ;v

k
i
: ð68Þ
Each weighted Dirac mass is generally called a ‘‘parcel” and can be physically interpreted as an aggregated
number of droplets (the weight nk

i ), located around the same point, zk
i , with about the same velocity, uk

i and
about the same volume, vk

i . Nk denotes the total number of parcels in the computational domain at time tk.
In all our calculations, the weights nk

i were chosen in such a way that each parcel represents the same volume
of liquid ðnk

i vk
i ¼ ConstÞ.

Each time step of the particle method is divided in two stages. The first is devoted to discretization of the
left-hand side of the kinetic Eq. (1), modeling the motion and evaporation of the droplets. In our code, the new
position, velocity and volume of each parcel are calculated according to the following numerical scheme:
ukþ1
i ¼ uk

i expð�Dt=sk
i Þ þ V ðzk

i Þð1� expð�Dt=sk
i ÞÞ; ð69ÞZ vkþ1

i

vk
i

dv=RvðvÞ ¼ Dt; ð70Þ

zkþ1
i ¼ zk

i þ Dtukþ1
i ¼ zk

i þ DtV ðzk
i Þ þ Dtðuk

i � V ðzk
i ÞÞ expð�Dt=sk

i Þ; ð71Þ
where V denotes the axial gas velocity, zk
i ðuk

i Þ corresponds to the axial coordinate of the position (velocity) of
the parcel i at time tk, Rv is the evaporation rate (independent of t and x since the gas composition and tem-
perature are assumed constant in the domain). Eq. (70) is resolved analytically and depends on the chosen
evaporation model. For linear evaporation, it can be written as
vkþ1
i ¼ vk

i expð�EvDtÞ ð72Þ

and for non-linear evaporation, it is written as
skþ1
i ¼ sk

i � EsDt; ð73Þ

where sk

i is the parcel surface area. The parcel relaxation time sk
i is defined as
sk
i ¼

2qðrk
i Þ

2

9lg

; ð74Þ
with rk
i being the parcel radius, q the liquid density and lg the gas viscosity.
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In Eqs. (69)–(71), the parcel radial coordinate is not calculated because the trajectories of the parcels are
straight lines. Besides, as mentioned above, the influence of the droplets on the gas flow is not taken into
account. Hence, Eq. (50) is used to calculate the gas velocity, V ðzk

i Þ, at the parcel location.
The second stage of a time step is devoted to the discretization of the collision operator. Several

Monte-Carlo algorithms have been proposed in the literature for the treatment of droplet collisions
[30,18,33,17,34]. They are all inspired by the methods used in molecular gas dynamics [4] and, in particular,
they suppose that the computational domain is divided into cells, or control volumes, which are small enough
to consider that, within them, the droplet distribution function is almost uniform.

The algorithm used in our reference Lagrangian solver is close to the one proposed by O’Rourke. It consists
of the following three steps (see also [18] for more details):

1. For each computational cell CJ , containing NJ parcels, we choose randomly, with a uniform distribution
law, NJ=2 pairs of parcels, ðN J � 1Þ=2 if NJ is odd.

2. For each pair p, let p1 and p2 denote the two corresponding parcels with the convention n1 P n2, where n1

and n2 denote the parcel numerical weights. Then for each pair p of the cell CJ , we choose randomly an
integer mp, according to the Poisson distribution law:
P ðmÞ ¼ k12

m!
expð�k12Þ;

with

k12 ¼ p
n1ðN J � 1ÞDt

volðCJ Þ
ðR1 þ R2Þ2ju1 � u2j

with volðCJ Þ being the volume of cell CJ , which is proportional to ðzJ=z0Þ2 for the nozzle test case, and R1,
R2 being the radii of the parcels p1, p2. The coefficient k12 represents the mean number of collision, during
ðN j � 1Þ time steps, between a given droplet of parcel p2 and any droplet of parcel p1. Note that a given pair
of parcels is chosen, on average, every ðNj � 1Þ time steps.

3. If mp ¼ 0, no collisions occur during this time step between the parcels p1 and p2. Otherwise, if mp > 0, parcel
p1 undergoes mp coalescence with parcel p2 and the outcome of a collision is treated as follows. First the
weight n1 of the parcel p1 is replaced by n01 ¼ n1 � mpn2 and its other characteristics are left unchanged. If
n01 6 0, parcel p1 is removed from the calculation. Secondly, the velocity u2 and the volume v2 of parcel
p2 are replaced by
v02 ¼ v2 þ mpv1; u02 ¼
v2u2 þ mpv1u1

v2 þ mpv1

and its weight, n2, is left unchanged.

Let us mention that, for each time step and each control volume CJ , the computational cost of this algo-
rithm scales like OðNJ Þ. This is a great advantage compares to the O’Rourke method, which scales like
OðN 2

JÞ. Another algorithm, with the same scaling features, has been introduced by Schmidt and Rutland
in [34].

To obtain good accuracy, the time step, Dt, must be chosen small enough to ensure that the number of col-
lisions between two given parcels, p1 and p2, is such that for almost every time: mpn2 6 n1. The average value of
mp being k12, this constraint is equivalent to the condition
n2NJDt
volðCJ Þ

pðR1 þ R2Þ2ju1 � u2j � 1: ð75Þ
For the nozzle test case described above, this constraint reveals to be less restrictive than the ‘‘CFL”

condition
8i ¼ 1; . . . ;N ;
juijDt
Dz
� 1; ð76Þ
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with Dz being the mesh size. This condition is necessary to compute accurately the droplet movement and in
particular to avoid that a parcel goes through several control volumes during the same time step. This is essen-
tial in order to have a good representation of the droplet distribution function in each mesh cell.

3.4.2. Reference solution

The Lagrangian solver just described is used to provide reference solutions in stationary cases with and
without coalescence. In order to obtain a converged solution, particular attention must be devoted to the
choice of the number of parcels, the size of the cells, and the time step.

For cases without coalescence, the computational cells are only used to have spatially averaged quantities
to compare with Eulerian results. Moreover, the stationary aspect of the problem allows averaging in time in
order to obtain smooth solutions. For these reasons, the conditions on the number of parcels and on the size
of the computational cells are not very restrictive in the absence of coalescence. The time step is only limited by
the CFL-like condition (76) needed for the convergence, with a low value. This last condition is the most
restrictive since the scheme used for the transport of the particles is first order. For our test cases, the time
step must be 10�6 s or smaller.

For cases with coalescence, there are additional restrictions. First, the algorithm used for coalescence
assumes that the droplet distribution function of the spray is nearly uniform over each computational cell.
However, in the region with high gradients of the gas velocity, that is to say at the entrance of the nozzle, this
distribution can change quickly and the size of the cells must be small enough to avoid numerical errors.
Moreover, in order to properly describe the coalescence phenomenon in each cell with the stochastic algo-
rithm, a sufficient number of parcels must be present in each cell, typically on the order of 50, with a minimum
of 20 [1]. The smaller are the cells, the larger must be the number of parcels in the computational domain. The
required size of the cells is evaluated for the case where the size distribution changes the most rapidly (the case
without evaporation). We then employ a non-uniform space discretization with 130 cells, with smaller cells
near the entrance of the nozzle defined using a uniform discretization for the variable z3=10. The number of
parcels injected per second is given in Tables 1 and 2.

3.5. Eulerian multi-fluid solver

Eulerian multi-fluid methods were developed as an alternative to Lagrangian methods for the simulation of
polydisperse evaporating sprays. A complete derivation of such methods from the kinetic model is performed
in [21] for dilute sprays and in [22] for sprays with coalescence. The principle of the method is quite different
than the one used in DQMOM. Indeed, it can be considered as a finite-volume discretization in the droplet size
phase space for moments of order 0 and 1 of the velocity distribution conditioned on size. In laminar flows, it
can be proven rigorously that it is sufficient to work with only these two moments as long as the velocity dis-
Table 1
Number of parcels for the Lagrangian simulations for the cases without coalescence

Distribution Evaporation No. of parcels No. of parcels inj/s

Monomodal Linear 41560 100,000
Monomodal Non-linear 20,440 1,000,000
Bimodal Non-linear 6320 200,000

Table 2
Number of parcels for the Lagrangian simulations for the cases with coalescence

Distribution Evaporation No. of parcels No. of parcels inj./s Min. No. of parcels/cell

Monomodal Linear 160,000 200,000 40
Bimodal Linear 126,000 560,000 50
Monomodal Non-linear 35,000 1,300,000 260
Monomodal No 44,200 300,000 65
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tribution conditioned on droplet size is mono-kinetic [7,8] (i.e. all droplets with the same volume have identical
velocities so that the size-conditioned velocity variance is null). By construction, the nozzle test problem will be
mono-kinetic for non-coalescing droplets. However, with coalescence the size-conditioned velocity variance
can be non-zero. Comparisons between the Lagrangian and Eulerian results in the presence of coalescence will
therefore allow us to quantify the magnitude of the error caused by invoking the mono-kinetic assumption in
the Eulerian models. (Recall that the choice of moments used in the DQMOM linear system is equivalent to
the mono-kinetic assumption in the multi-fluid model.) In this section, we provide only the main points of the
derivation of the multi-fluid model, as well as the underlying assumptions that are implied, and the resulting
system of equations that will be solved.

The first step consists of writing equations for the two moments in velocity. This leads to the closed semi-
kinetic model if the following assumption is made concerning the structure of f: f ðv; u; x; tÞ ¼
nðv; x; tÞdðu� �uðv; x; tÞÞ. In other words, the droplet velocity conditioned on the size is assumed to be Dirac
delta function. In the case of a coalescing spray, the compatibility of such a condition with droplet coalescence
is far from obvious; however, the semi-kinetic system of conservation equations can be obtained by using an
asymptotic limit as presented in [22].

The second step consists of discretizing nðvÞ in sections ½vðj�1Þ; vðjÞÞ and in integrating the semi-kinetic model
over each section. This leads to a multi-fluid model (by using a presumed distribution jðjÞðvÞ in each section),
thereby yielding a conservation equation on the moment associated with the mass density
nðv; x; tÞ ¼ mðjÞðx; tÞjðjÞðvÞ where

Z vðjÞ

vðj�1Þ
qvjðjÞðvÞdv ¼ 1:
In addition, only the averaged velocity is considered in each section, i.e. �uðv; x; tÞ ¼ �uðjÞðx; tÞ if vðj�1Þ
6 v < vðjÞ.

The resulting system can be found in [22]. It can be rewritten and simplified in the stationary, self-similar, 2D
axisymmetrical configuration we are considering.

The resulting set of equations is
2mðjÞ
uðjÞz

z
þ @zðmðjÞuðjÞz Þ ¼ �ðE

ðjÞ
1 þ EðjÞ2 ÞmðjÞ þ Eðjþ1Þ

1 mðjþ1Þ þ CðjÞm ; ð77Þ

2mðjÞ
uðjÞz

z

� �2

þ @zðmðjÞðuðjÞz Þ
2Þ ¼ �ðEðjÞ1 þ EðjÞ2 ÞmðjÞuðjÞz þ Eðjþ1Þ

1 mðjþ1Þuðjþ1Þ
z þ mðjÞF ðjÞz þ CðjÞmuz; ð78Þ
where uðjÞz is the axial velocity, which only depends on z, and ruðjÞz =z is the radial velocity, since the trajectories
are straight lines. Moreover, EðjÞ1 and EðjÞ2 are the ‘‘classical” pre-calculated vaporization coefficients [13,21]:
EðjÞ1 ¼ �qvðj�1ÞRvðvðj�1ÞÞjðjÞðvðj�1ÞÞ and EðjÞ2 ¼ �
Z vðjÞ

vðj�1Þ
qRvðvÞjðjÞðvÞdv
and F ðjÞz ðvðjÞu ; u
ðjÞ
z Þ is the axial component of the ‘‘classical” pre-calculated drag force [13,21]:
F ðjÞz ¼
Z vðjÞ

vðj�1Þ
qvF zðv; uðjÞz ÞjðjÞðvÞdv where vðjÞu ¼

R vðjÞ

vðj�1Þ vjðjÞðvÞdvR vðjÞ

vðj�1Þ v1=3jðjÞðvÞdv

" #3=2

:

The source terms associated with coalescence phenomenon in the mass and momentum equation, respectively,
of the jth section read
CðjÞm ¼ �mðjÞ
XN

k¼1

mðkÞV jkQjk þ
XIðjÞ
i¼1

mðo
}
ji Þmðo

�
jiÞV o}ji o�ji

ðQ}ji þ Q�jiÞ; ð79Þ

CðjÞmuz ¼ �mðjÞuðjÞz

XN

k¼1

mðkÞV jkQjk þ
XIðjÞ
i¼1

mðo
}
ji Þmðo

�
jiÞV o}ji o�ji

u
ðo}ji Þ
z Q}ji þ u

ðo�jiÞ
z Q�ji

� �
; ð80Þ
where V jk ¼ juðjÞz � uðkÞz j and the collision integrals Qjk, Q}ji and Q�ji do not depend on z. The disappearance

integrals Qjk are evaluated on rectangular domains Ljk ¼ ½vðj�1Þ; vðjÞ� � ½vðk�1Þ; vðkÞ�, whereas the appearance
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integrals, Q}ji and Q�ji, are evaluated on the diagonal strips D}�j ¼ fðv}; v�Þ; vðj�1Þ
6 v} þ v� 6 vðjÞg=[N

k¼1Lkk,
which are symmetric strips with respect to the axis v} ¼ v�. These strips D}�j are divided into domains, denoted
by X ji and the symmetric one, X sym

ji , where the velocity of the partners is constant. The domains X ji and X sym
ji

are the intersection of D}�j with Lkl, k > l, and Lkl, k < l, respectively; their index is denoted i 2 ½1; I ðjÞ� and we
define two pointers that indicate the collision partners for coalescence, at fixed i: o}ji ¼ k and o�ji ¼ l.

The coefficients used in the model, either for the vaporization process or the drag force EðjÞ1 , EðjÞ2 and F ðjÞz ,
j ¼ ½1;N � in Eqs. 77, 78, or for the coalescence: Qjk, j ¼ ½1;N �; k ¼ ½1;N �; k 6¼ j, Q}ji , Q�ji, j ¼ ½2;N �; i ¼ ½1; I ðjÞ� in
Eqs. (79) and (80) can be pre-evaluated from the choice of jðjÞ in each section. The algorithms for the evalu-
ation of this coefficients are provided in [22]. The distribution function is chosen constant as a function of the
radius in the sections 1 to N and exponentially decreasing as a function of the surface in the last section, as
done in [22].

Because only the one-way coupled equations are solved and since the structure of the gas velocity field is
prescribed and stationary, we only have to solve the 1D ordinary differential Eqs. (77) and (78) for each sec-
tion. The problem is then reduced to the integration of a stiff initial value problem from the inlet where the
droplets are injected until the point where 99.9% of the mass has evaporated. The integration is performed
using LSODE for stiff ordinary differential equations from the ODEPACK library [16]. It is based on BDF
methods [14] (Backward Differentiation Formulae) where the space step is evaluated at each iteration, given
relative and absolute error tolerances [16]. The relative tolerance, for the solutions presented in the following,
are taken to be 10�4, and the absolute tolerance are related to the initial amount of mass in the various sec-
tions, since it can vary of several orders of magnitude. Repeated calculations with smaller tolerances have
proved to provide essentially the same solutions.

4. Results and discussion

Simulations for the cases presented in the previous section were carried out with the Lagrangian method,
the multi-fluid model, and DQMOM. Except for the cases without evaporation for which the multi-fluid
method is not well suited (it requires a large number of sections and is only presented for comparison pur-
poses), the Eulerian methods were solved using a initial-value solver for ODEs and required very short com-
putational times (i.e., CPU seconds) on a desktop computer. It is interesting to note that in the case without
evaporation, the small computational cost still holds for the DQMOM approach.

In contrast, the time- and z-dependent Lagrangian simulations required several CPU hours for each case.
Because the DQMOM and multi-fluid results do not depend on time, it is not appropriate to compare the
computing times directly. Nevertheless, it will generally be the case that using Eulerian methods will result
in a substantial reduction in the computing time for solving the spray equation. Such a statement was studied
in details in [22] for unsteady calculations and the conclusions drawn from that paper are applicable to the two
Eulerian methods presented here. Thus, the principal open question is whether or not the DQMOM results are
of comparable accuracy to the multi-fluid model and to the more costly Lagrangian simulations. We will com-
pare predictions for selected statistics from the three solution methods in order to answer this question. The
initial condition for DQMOM using the monomodal distribution are given in Table 3.
Table 3
Initial conditions for weights and abscissas found using QMOM for the monomodal distribution

n Volume moments, N ¼ 4 Radius moments, N ¼ 4 Radius moments, N ¼ 6 Radius moments, N ¼ 8

wn=N0 rn wn=N0 rn wn=N0 rn wn=N0 rn

1 0.732330 9.99551 0.184501 4.40796 8.55732E�2 3.34238 4.64451E�2 2.84655
2 0.254558 18.5282 0.539779 11.0409 0.277911 7.52623 0.148816 5.53731
3 1.28835E�2 27.5630 0.263599 18.2840 5.53393E�2 12.9743 0.308957 9.69167
4 2.27970E�4 36.0142 1.21218E�2 28.3910 4.97780E�3 18.8823 0.343802 14.2697
5 3.11372E�4 26.3693 0.129310 19.2986
6 1.66714E�5 34.7171 2.09052E�2 25.2866
7 1.69824E�3 31.5808
8 6.56271E�5 37.5149
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The representative moments used to compare the three solution methods are the number density m0, the
mass density m1, the average axial velocity difference between droplets and the gas phase ud , and the Sauter
mean radius r32. They are defined by
m0 ¼
Z

f ðv; uÞdvdu; m1 ¼
Z

qvf ðv; uÞdvdu;

ud ¼
R

qvuzf ðv; uÞdvdu

m1

� V ; r32 ¼ ð4p=3Þ1=3

R
vf ðv; uÞdvduR

v2=3f ðv; uÞdvdu
:

With the DQMOM approach, these quantities are written
m0 ¼
XN

n¼1

wn; m1 ¼
XN

n¼1

wnqvn;

ud ¼
XN

n¼1

wnvnðnn � V Þ=m1; r32 ¼ ð4p=3Þ1=3

PN
n¼1wnvnPN

n¼1wnv2=3
n

:

And with the multi-fluid method, they are
m0 ¼
XN

j¼1

mðjÞ
Z vðjÞ

vðj�1Þ
jðjÞðvÞdv; m1 ¼

XN

j¼1

mðjÞ;

ud ¼
XN

j¼1

mðjÞðuðjÞz � V Þ=m1; r32 ¼ ð4p=3Þ1=3

PN
j¼1mðjÞ

R vðjÞ

vðj�1Þ vjðjÞðvÞdvPN
j¼1mðjÞ

R vðjÞ

vðj�1Þ v2=3jðjÞðvÞdv
:

Note that in practical applications, the mass density is a key quantity because it represents the total mass of
liquid contained in the droplets. In the nozzle test case, the rate of coalescence is strongly dependent on the
velocity difference between droplets, which we find to be strongly correlated with the average axial velocity
difference. Indeed, if ud is not accurately captured, then we find that the predictions for all moments will de-
grade accordingly. In addition to the moments, we will also compare the mean droplet velocity conditioned on
the radius huz j ri at selected downstream locations, as well as the mass distribution function (qvf ). For the
DQMOM, the scaled weights will be used to represent the mass distribution function. Obviously, since the
sum of the weights equals the area under the mass distribution function, the absolute value of the heights
of the scaled weights is arbitrary. Nevertheless, the relative heights and the locations provide insight into
how well the quadrature points represent the distribution function.

We should note that for the monomodal cases without coalescence, the results with no evaporation were
essentially identical for all three solution methods. The results presented below for the monomodal case with
linear evaporation are representative of the quality of the predictions for all cases without coalescence and no
evaporation. Likewise, for the bimodal case without coalescence and with linear or no evaporation, DQMOM
and the Lagrangian method were essentially identical. The multi-fluid method also yielded very good results
for these cases if the number of sections was chosen large enough to mitigate the numerical diffusion in the size
phase space associated to the description of evaporation that leads to broadening of the peaks. Nonetheless,
because none of these cases revealed any unanticipated problems for any of the simulation methods, we will
not discuss them further. Instead, we will primarily focus on cases that present particular challenges to one or
more of the solution methods.

4.1. Monomodal case: linear evaporation without coalescence

We begin with a representative case where all three solution methods yield essentially identical results for all
statistics. As noted in the discussion of the methods, for linear evaporation without coalescence the DQMOM
equation for each node is the same as the Lagrangian model. Thus, the only difference between the two solu-
tion methods is that the Lagrangian method uses many more particles to represent the spray than the
DQMOM method (N ¼ 4). For the monomodal distribution, the multi-fluid model does not require many sec-
tions (N ¼ 10) to accurately capture cases with linear evaporation without coalescence. The simulation results
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for the three methods are shown in Fig. 2. It can be observed that the mass density and velocity difference
predicted by the three methods are nearly identical. From the plot of the mass distribution function at
z ¼ 16 cm, we can see that the multi-fluid model with 10 sections does a good job of capturing the Lagrangian
mass distribution function. Likewise, the DQMOM weights and abscissas follow the general shape of the
Lagrangian mass distribution function. Finally, for the conditional velocity huz j ri we see that all three meth-
ods produce the same curve. We should note that for cases without coalescence the Lagrangian simulations
predict essentially no velocity dispersion about the conditional value. In other words, conditional velocity fluc-
tuations defined by u0ðrÞ � hðuz � huz j riÞ2 j ri1=2 are null. This is exactly one of the necessary conditions
evoked when deriving the multi-fluid model, which would explain why its predictions for this case are in excel-
lent agreement with the Lagrangian method.

4.2. Monomodal case: non-linear evaporation without coalescence

Cases with non-linear evaporation result in a loss of droplets in finite time, which translates into a non-zero
flux wðtÞ in DQMOM. For the monomodal case without coalescence, we expect the flux term to be a smooth
function of t, and thus it cannot be neglected. In the multi-fluid model, the flux is computed directly from the
shape of the first section (i.e., the section near the origin) and does not yield any difficulty. In our multi-fluid
simulations, we use the ‘‘optimal” choice of sections with N ¼ 12 shown in Fig. 3 [23]. Obviously, a finer dis-
cretization (larger N) could be used in the multi-fluid model to attain closer agreement with the Lagrangian
method, but this would increase the computational cost. Note that the first section is represented by a constant
slope, which corresponds to a constant flux level at each time step. For the DQMOM, we use N ¼ 4 and the
evaporative flux is computed using the ratio constraints introduced in Section 2.3. It can be noticed that the
increase of N do not imply an increase of the number of conserved moments during the evaporation step since
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Fig. 2. Monomodal case with linear evaporation (Rv 	 7:126v). Top left: mass density. Top right: velocity difference. Bottom left: mass
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the number of ratio constraints is also increasing in the same way. The value of N is then conditioned by the
capacity of the method to follow the dynamics of droplets of different sizes. Representative results for the three
solution methods are shown in Fig. 4. In general, all three methods produce very similar predictions. From the
number density, we can observe that DQMOM with the ratio constraints does a good job of predicting the
loss of droplets due to evaporation. Likewise, the mass densities found from all methods are very close.
We should note that for z > 20 cm the number of remaining droplets is very small and the statistics computed
from the Lagrangian method are subject to statistical errors. Comparing the Sauter mean radii predicted by
the three methods, we can observe that the agreement is generally satisfactory up to z ¼ 20 cm. The DQMOM
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shows the largest deviation from the Lagrangian method at z ¼ 20 cm due to errors in the flux model, but the
agreement is still acceptable. The differences in the Sauter mean radius are reflected in the predictions of the
velocity difference. In general, droplets with a larger radius will have a higher velocity difference. Thus, we see
that initially the Sauter mean radius predicted by DQMOM is larger than that from the Lagrangian method,
resulting in a slightly higher velocity difference at z ¼ 12 cm. Later on (z > 15 cm) this trend is reversed.
Finally, we can note that neglecting the flux in DQMOM yields poor predictions of number density since
we can observe the artificial jumps in the number density related to the singular fluxes associated to one
abscissa crossing the zero size limit, as well as the oscillating dynamics of the Sauter mean radius for this case.

4.3. Bimodal case: non-linear evaporation without coalescence

By changing from the monomodal to the bimodal distribution, we change the nature of the initial distribu-
tion function and thus the nature of the numerical difficulties. For the multi-fluid model, the bimodal case is
difficult because a relatively large number of sections (N ¼ 30) is needed to capture the two peaks with accept-
able numerical diffusion. The use of a second-order method developed in [20] would reduce this number to
around 10; however, it would still be difficult to describe Dirac delta function by a finite-volume approxima-
tion. On the other hand, this case is ‘‘optimal” for DQMOM because only two (N ¼ 2) abscissas are required
(one for each peak) and the flux is null, expect when a peak passes the origin. In Fig. 5 results from the three
simulation methods are shown and it is clear that DQMOM performs extremely well for this case by setting
w ¼ 0. For example, the number density function shows step changes at z ¼ 7:2 cm and 13.8 cm (i.e., when a
peak passes the origin), and DQMOM exactly reproduces this behavior. With N ¼ 30, the multi-fluid model
does a good job of predicting the mass density. However, from the plots of number density and Sauter mean
radius, we can observe the negative effects of numerical diffusion, which tends to smooth out the peaks in the
distribution (the method has been shown to be first order in the droplet size discretization step in [20], where
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some higher-order methods have been proposed). Nevertheless, all three methods yield reasonable predictions
for all of the cases without coalescence. We should note, however, that for more complicated initial distribu-
tions (e.g., delta functions combined with smooth functions) specifying the evaporative flux in DQMOM may
be problematic.

4.4. Monomodal case: linear evaporation with coalescence

We now turn to the more difficult cases that include coalescence. As mentioned earlier, the coalescence of
droplets with different volumes (and velocities) will lead to velocity dispersion (u0ðrÞ > 0). Physically, this
implies that two droplets with the same volume will have a non-zero probability of colliding (due to the dif-
ference in velocity). Thus, the rate of coalescence when u0ðrÞ > 0 will be larger than when u0ðrÞ ¼ 0. Numerical
approximations (such as the multi-fluid model) that assume u0ðrÞ ¼ 0 should therefore predict smaller droplets
than the Lagrangian method. In Fig. 6 we present results for the three methods for linear evaporation (w ¼ 0)
with coalescence. From the velocity difference we can observe that coalescence leads to a slower relaxation to
the gas velocity due to formation of larger droplets than without coalescence. Note that in general all three
methods predict similar results for the velocity difference. However, due the differences in the predictions of
the shape of the mass distribution function, the multi-fluid model predicts slightly slower relaxation and
the DQMOM slightly faster than is found with the Lagrangian method. Comparing with Fig. 1, we can
observe that coalescence leads to much larger droplets than are present in the initial distribution function.
In general, the multi-fluid model predicts a slightly larger number of droplets above 80 lm than the Lagrang-
ian method. Nevertheless, the predictions are in reasonably good agreement. The predictions for the
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conditional velocity huz j ri are also good. Finally, note that we used N ¼ 6 with DQMOM, the reason for
which will be discussed for a more difficult case in Section 4.7.

4.5. Bimodal case: linear evaporation with coalescence

We now consider a more difficult case where the initial distribution is bimodal. As discussed previously, the
peaks in the distribution are difficult to resolve accurately in the multi-fluid model with a limited number of
sections. When combined with coalescence, this has important consequences because numerical diffusion can
lead to spurious coalescence of droplets with slightly different volumes (and hence velocities) as observed in
[22]. For example, with the bimodal distribution with droplets of radii 10 and 30 lm, coalescence cannot pro-
duce droplets below 30 lm. However, spurious coalescence between droplets of radii near 10 lm leads to
droplets in the range below 30 lm. We overcome this difficultly by using a large number of sections
(N ¼ 500) in the multi-fluid model. This number could also be reduced by using a second-order method for
the evaporation such as the one of [20] but this is not the point we want to make with this configuration. Note
that the same problem arises in the Lagrangian method when the spatial cell size Dz is too large. While
DQMOM does not suffer from spurious coalescence, the bimodal case is still difficult because the initially
two-peak distribution will quickly form multiple peaks due to pair-wise collisions. With N ¼ 6 in DQMOM,
it is at best possible to represent six peaks. Results for the three methods are shown in Fig. 7 where it can be
seen that the mass density and the velocity difference are reasonably well predicted by the multi-fluid model
and DQMOM. From the mass distribution function at z ¼ 11 cm, the multi-peak structure due to coalescence
is quite evident, as is the slight numerical diffusion in the multi-fluid model (even with N ¼ 500, but this is
expected since this is a first-order method). Note that DQMOM with N ¼ 6 has two abscissas at points
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corresponding to the major peaks (10 and 33 lm), and the remaining abscissas at points without major peaks.
Comparisons of the conditional velocity predicted by the three methods are also quite favorable for this dif-
ficult case.

4.6. Monomodal case: non-linear evaporation with coalescence

We will now consider the more physically relevant case of non-linear evaporation. As discussed earlier, the
evaporative flux for this case is non-zero, so we will need to model it in DQMOM. Here, we consider two mod-
els for w: (a) ratio constraints and (b) w ¼ 0. Because the initial distribution is monomodal, we might expect
that using ratio constraints is always a better choice. On the other hand, if coalescence is much faster than
evaporation, it might happen that droplets grow faster than they disappear so that the evaporative flux is clo-
ser to zero. For the multi-fluid model, we use N ¼ 15 sections. Results for the three methods are shown in
Fig. 8. The number density illustrates the effect of the choice of w in DQMOM. With w ¼ 0, the number den-
sity changes discontinuously whenever an abscissa passes the origin. However, DQMOM with ratio con-
straints yields predictions very similar to the other two methods. Likewise, the mass density is predicted to
be very similar for all three methods; however, using zero flux with DQMOM is slightly worse. The predictions
for the Sauter mean radius show opposing trends. In general, the multi-fluid model overpredicts the mean
radius (i.e. predicts too much coalescence), while DQMOM underpredicts it. As before, for the DQMOM pre-
dictions, the results with the ratio constraints are best. The predictions for the velocity difference follows the
same trend. As discussed in the next example, the differences observed between the Lagrangian method and
the two Eulerian methods is likely due to the latter’s inability to capture velocity dispersion. Moreover, we
10 15 20 25 30
z (cm)

0

1e+11

2e+11

3e+11

4e+11

5e+11

6e+11

nu
m

be
r 

de
ns

it
y 

of
 th

e 
dr

op
le

ts
 (

m
-3

) Lagrangian
DQMOM N=6
DQMOM N=6 without flux
Multi-Fluid N=15
without collision

10 15 20 25 30
z (cm)

0

0.001

0.002

0.003

0.004

to
ta

l m
as

s 
de

ns
ity

 (
g/

cm
3 )

Lagrangian
DQMOM N=6
DQMOM N=6 without flux
Multi-Fluid N=15
without collision

10 15 20 25 30

z (cm)

0

10

20

30

Sa
ut

er
 m

ea
n 

ra
di

us
 (

m
ic

ro
m

)

Lagrangian
DQMOM N=6
DQMOM N=6 without flux
Multi-Fluid N=15
without collision

10 15 20 25 30

z (cm)

0

10

20

30

40

50

60

di
ff

er
en

ce
 o

f 
ve

lo
ci

ty
 w

ith
 th

e 
ga

s 
(c

m
/s

)

Lagrangian
DQMOM N=6
DQMOM N=6 without flux
Multi-Fluid N=15
without collision

Fig. 8. Monomodal case with non-linear evaporation and coalescence. Top left: number density. Top right: mass density. Bottom left:
Sauter mean radius. Bottom right: velocity difference.



R.O. Fox et al. / Journal of Computational Physics 227 (2008) 3058–3088 3085
have used N ¼ 6 with DQMOM since, as shown in Section 4.7, it is adequate to describe coalescence phenom-
enon for this particular set of moments.

4.7. Monomodal case: coalescence with no evaporation

In order to highlight the role of coalescence on determining the evolution of the number density function,
we now consider a case with no evaporation. For this case, droplets will grow continuously due to coalescence,
and velocity dispersion will enhance the collision rate and lead to even larger droplets. Because the multi-fluid
model uses fixed sections, it is necessary to fix the maximum radius at 200 lm with N ¼ 500 in order to capture
the largest droplets at z ¼ 30 cm. In contrast, the abscissas in DQMOM move in phase space to accommodate
growth. Nevertheless, we can anticipate that the number of abscissas will affect the accuracy of the DQMOM
predictions. In Fig. 9 it can be observed that when the number of moments increases, the accuracy of the
DQMOM solution increases, from something almost ignoring the coalescence phenomenon with N ¼ 2 to
a saturation of the accuracy for N P 8. Indeed, the accuracy of the DQMOM for the description of the coa-
lescence is related to the accuracy of the approximation of the coalescence operator by the quadrature formula
(24) and (26), which increases with N. Since the results are quite good and at a low cost (and the linear system
is reasonably well conditioned), we will use N ¼ 6 for comparisons with the other two methods.

As mentioned earlier, without coalescence or evaporation all three methods predict essentially identical
results. In Fig. 10 the results for the pure coalescence case are shown. Notice that the mass density does
not decrease to zero because there is no evaporation; however, it does change due to transport. From the
velocity difference, we can see that the multi-fluid model and DQMOM overpredict the relaxation rate. As
discussed previously, this is due to both methods underpredicting the mean droplet size. From the mass
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distribution functions at z ¼ 22 cm, we can observe that the Lagrangian method has more droplets with radii
above 80 lm than the multi-fluid model, which is consistent with the observed trend in the velocity difference.
In order to explore the link between velocity dispersion and coalescence, we have computed 50% probability
intervals for the conditional velocity. These are defined to be the values of v for which the conditional velocity
PDF f ðv j rÞ is 50% of its peak value. Note that in the absence of velocity dispersion f ðv j rÞ is a delta function
centered at huz j ri, so the width of the intervals is a measure of dispersion. From the plot of conditional veloc-
ity, we can note that for large droplets the velocity dispersion is significant. We can also note that using
DQMOM essentially results in points along the curve huz j ri, i.e., increasing N with the same choice of
moments does not capture the velocity dispersion.

5. Conclusions

In this work, we have implemented DQMOM to treat the Williams spray equation that describes evapora-
tion, acceleration and coalescence of liquid droplets in a laminar gas flow. The derivation of the DQMOM
equations was shown to be a straightforward task, and resulted in a linear system for the source terms.
The right-hand side of this linear system is non-zero only in the presence of coalescence or non-linear evap-
oration. The coefficient matrix depends on the choice of moments used in DQMOM.

We have compared this method, as well as the solution obtained with another Eulerian method: the multi-
fluid model, to the reference solution produced by a classical Lagrangian solver. As far as coalescence phe-
nomena are concerned, the efficiency of DQMOM has been shown to be better than the multi-fluid model
due to its limited numerical diffusion in the size phase space, especially for the bimodal distribution function.
However, as far as the evaporation process is concerned, it is comparable to the multi-fluid model, but still
needs a further study in order to fully understand how to treat optimally the issue of the evaporative flux
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due to droplet disappearance. Although this issue has been so far neglected in the literature on moment meth-
ods, our study illustrates that it has an important effect on the moment dynamics.

The principal conclusion from this study is that DQMOM is numerically robust and straightforward to
implement for the Williams spray equation and that it will be a very good candidate for more complex
two-phase combustion applications once the issue of the evaporative flux is further improved.
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